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Abstract
Non-self-embedding grammars are a subclass of context-free grammars which only generate regu-
lar languages. The size costs of the conversion of non-self-embedding grammars into equivalent
finite automata are studied, by proving optimal bounds for the number of states of nonde-
terministic and deterministic automata equivalent to given non-self-embedding grammars. In
particular, each non-self-embedding grammar of size s can be converted into an equivalent non-
deterministic automaton which has an exponential size in s and into an equivalent deterministic
automaton which has a double exponential size in s. These costs are shown to be optimal. More-
over, they do not change if the larger class of quasi-non-self-embedding grammars, which still
generate only regular languages, is considered. In the case of letter bounded languages, the cost
of the conversion of non-self-embedding grammars and quasi-non-self-embedding grammars into
deterministic automata reduces to an exponential of a polynomial in s.

1. Introduction

In formal language theory, the most investigated classes are probably those of regular and
context-free languages. The interest for them is not purely theoretical, but it is also related
to their practical applications as, for instance, the definition of programming language syntax
and the construction of lexical and syntactic analyzers [1].

As well-known, the class of context-free languages properly contains the class of regular ones.
Roughly speaking, the difference between these two classes is related to the representation of
recursive structures (e.g., nested parentheses, nested blocks in programming languages, arith-
metic expressions in infix notations) which is possible in context-free languages but not in
regular ones. This difference can be emphasized, in terms of recognizers, by observing that
regular languages are equivalent to finite automata, while context-free languages are equiva-
lent to pushdown automata, namely finite automata extended with a pushdown store, i.e., the
memory structure which allows to implement the recursion.

In one of the first of his pioneering papers on grammars, Chomsky formalized this difference in
terms of grammars, by studying the self-embedding property [4]. A variable A in a context-free
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grammar is self-embedded if it is able to reproduce itself in a sentential form, enclosed between
two nonempty strings α and β, in symbols A

?
=⇒ αAβ. This means that the variable A

can generate a “true” recursion that needs an auxiliary memory (typically a stack) to be
implemented (in contrast with tail or head recursions, corresponding to the cases in which α
or β are empty, respectively, that can be easily eliminated). Chomsky proved that context-
free grammars without self-embedded variables, namely non-self-embedding grammars, only
generate regular languages. Hence, the “true” recursion given by self-embedded variables is the
additional capability which makes the class of context-free languages larger than the class of
regular ones.

The proof given by Chomsky of this result is constructive, namely it provides a method for ob-
taining a finite automaton equivalent to a given non-self-embedding grammar [4, 5]. A different
constructive proof of the same result was given by Anselmo, Giammarresi, and Varricchio [3],
by showing a decomposition of non-self-embedding grammars in regular grammars and then
iteratively applying regular substitutions to obtain equivalent finite automata. In the same
paper, the authors also proved that the size gap between non-self-embedding grammars and
equivalent finite automata is at least exponential, by showing the existence of a language (de-
fined over a one-letter alphabet) described by a non-self-embedding grammar of size O(s) for
which any equivalent nondeterministic finite automaton requires 2s many states.

In this paper we continue the investigation of the relationships between the sizes of non-self-
embedding grammars, together with one extension of them, and of equivalent finite automata.

It is worthwhile to mention that, in 1971, Meyer and Fischer proved that for any recursive
function f and arbitrarily large integer n, there exists a context-free grammar whose description
has size n and which generates a regular language, such that any equivalent finite automaton
requires at least f(n) states [12]. This means that it is not possible to obtain a recursive bound
relating the size of context-free grammars generating regular languages with the number of
states of equivalent deterministic finite automata. It is important to notice that the result of
Meyer and Fischer was obtained by considering grammars with a two-letter terminal alphabet.
The unary, i.e., one-letter, case was studied in 2002 by Pighizzini, Shallit, and Wang, who
obtained optimal recursive bounds [15].

In this paper, we show that also in the case of non-self-embedding grammars, the bounds are
recursive, independently on the alphabet size. In particular, by inspecting and refining the
construction presented in [3], we show that each non-self-embedding grammar of size s can be

converted into equivalent nondeterministic and deterministic automata with 2O(s) and 22O(s)

states, respectively. We also present a family of languages that witness that these gaps cannot
be reduced.

We already mentioned the unary case. We remind the reader that restricted to a one-letter
terminal alphabet, context-free languages are regular [8]. So one could ask what happens if we
consider context-free grammars where the only variables which are allowed to be self-embedded
are those generating only unary strings. Let us call such grammars quasi-non-self-embedding.
Andrei, Cavadini, and Chin proved that quasi-non-self-embedding grammars generate only
regular languages, as non-self-embedding ones [2]. Here, we prove that the size costs of the
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conversion of quasi-non-self-embedding grammars into equivalent nondeterministic and deter-
ministic finite automata are the same of the conversion of non-self-embedding grammars.

Since the size gap of the conversion into deterministic automata is witnessed by a family of
languages defined over a binary alphabet, where in any language each factor of a certain length
is required to appear in some strings, it is interesting to ask if the bound can be reduced,
when there is not such possibility. For this reason, in the last part of the paper, we consider
the case of letter-bounded languages, i.e., subsets of a∗1a

∗
2 · · · a∗m, for fixed pairwise distinct let-

ters a1, a2, . . . , am. While the cost of the conversion from quasi-non-self-embedding grammars
of size s into nondeterministic automata remains 2O(s), the cost of the conversion into deter-
ministic automata reduces to 2O(s2). As a consequence of the result on the unary case in [15],
also these upper bounds are optimal.

2. Preliminaries

Given a set S, let us denote by #S its cardinality, and by 2S the family of all its subsets. A
strongly connected component (scc, for short) of a directed graph G = (V,E) is a maximal
subset V ′ of V such that for each pair of vertices u, v ∈ V ′, G contains a path from u to v.
If V ′ = V , i.e., all the states of the graph form a unique scc, then G is said to be strongly
connected. An scc is trivial if it does not contain any loop, namely, it is a single vertex v
without the edge (v, v). Otherwise, it is said to be nontrivial.

We assume that the reader is familiar with basic notions from automata and formal language
theory. The empty string is denoted by ε. Given a string w ∈ Σ∗, w = a1a2 · · · an, ai ∈ Σ,
i = 1, . . . , n, let us denote by wR the reverse of w, namely the string an · · · a2a1. For any h ≥
0, Σh denotes the set of strings of length h over the alphabet Σ. We use dfa and nfa as
abbreviations for deterministic and nondeterministic finite automaton, respectively. A unary
automaton (language, respectively) is defined over a one-letter alphabet. A language L ⊆ Σ∗

is said to be bounded if it is a subset of w∗1w
∗
2 · · ·w∗m, for some words w1, w2, . . . , wm ∈ Σ∗. In

the case these words are pairwise different letters, i.e., L ⊆ a∗1a
∗
2 · · · a∗m, with a1, a2, . . . , am ∈ Σ

and ai 6= aj for i 6= j, then L is said to be letter-bounded.

A context-free grammar (cfg, for short) is a tuple G = (V,Σ, P, S), where V is the set of
variables, Σ is the set of terminals, with V ∩ Σ = ∅, S ∈ V is the initial symbol and P is the
finite set of productions, of the form A→ α, where A ∈ V and α ∈ (V ∪ Σ)∗. The relations ⇒
and

?
=⇒ are defined in the usual way. By L(G) we denote the language generated by G. For

each A ∈ V , G|A = (V,Σ, P, A) denotes the grammar obtained from G by taking A as initial
symbol. Hence L(G|A) is the language generated starting from A.

As a measure for the size of G we consider the total number of symbols used to specify the
grammar G, defined as Symb(G) =

∑
(A→α)∈P (2 + |α|) (cf. [11]).

The production graph P(G) of G is a direct graph which has V as vertex set and contains
an edge from A to B, A,B ∈ V , if and only if there is a production A → αBβ in P , for
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some α, β ∈ (V ∪ Σ)∗.

The grammar G is said to be right-linear (left-linear, resp.), if each production in P is either
of the form A→ wB (A→ Bw, resp.), or of the form A→ w, for some A,B ∈ V , w ∈ Σ∗.

By standard constructions, from each left-linear (or right-linear) grammar G of size s it is
possible to obtain an equivalent nfa with O(s) many states. Notice that, by changing the
initial symbol in G, the obtained nfa can be different (in the case of a right-linear grammar,
we need to change the initial state, while in the case of left-linear grammars we have to change
final states).

We are now going to introduce the main notions considered into this paper.

Definition 2.1 Let G = (V,Σ, P, S) be a context-free grammar. A variable A ∈ V is said

to be self-embedded when there are two strings α, β ∈ (V ∪ Σ)+ such that A
?

=⇒ αAβ. The

grammar G is self-embedding ( se, for short) if it contains at least one self-embedded variable,
otherwise G is non-self-embedding (nse, for short). G is quasi-non-self-embedding (qnse, for
short) when each self-embedded variable generates a unary language.

Note that in qnse grammars the self-embedded variables could generate different unary lan-
guages on different symbols of Σ.

Chomsky proved that nse grammars generate only regular languages [4, 5], i.e., they are no
more powerful than finite automata. This result has been extended to qnse grammars in [2],
where qnse grammars are called one-letter factorizable.

We point out that, as shown in [3], given a grammar G it is possible to decide in polynomial
time whether or not it is nse. With an easy modification, the same technique can be used to
decide if G is qnse.

The following operation will be fundamental in the paper:

Definition 2.2 ([3]) Let G1 = (V1,Σ1, P1, S1) and G2 = (V2,Σ2, P2, S2), with V1 ∩ V2 = ∅ be
two cfgs. The ⊕-composition of G1 and G2 is the grammar G = G1 ⊕ G2 = (V,Σ, P, S),
where V = V1 ∪ V2, Σ = (Σ1 \ V2) ∪ Σ2, P = P1 ∪ P2, and S = S1.

Intuitively, the grammar G = G1 ⊕ G2 generates all the strings which can be obtained by
replacing in any string w ∈ L(G1) each symbol A ∈ Σ1 ∩ V2 with a string in Σ∗2 which can
be derived from A in the grammar G2, i.e., which is in the language L(G2|A) (notice that the
definition of G1 ⊕ G2 does not depend on the initial symbol S2 of G2, i.e., by changing the
initial symbol of G2 the resulting grammar G does not change).

The following properties have been stated in [3]:

• If Σ1 ∩ V2 = ∅ then L(G1 ⊕G2) = L(G1).

• ⊕-composition is associative.
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• If G1 and G2 are nse grammars, then G1 ⊕G2 is an nse grammar.

We also observe that given two cfgs G1 and G2, if L(G1) is regular and, for each A ∈ Σ1 ∩ V2,
L(G2|A) is regular, then L(G) is regular (regular substitution). In particular, given an nfa M1

accepting L(G1) and nfas MA accepting L(G2|A), for A ∈ Σ1 ∩ V2, we can obtain an nfa M
accepting L(G1⊕G2) by “substituting” each automaton MA in M1, namely by replacing in M1

each transition from a state p to a state q on the symbol A with a copy of the nfa MA.
More precisely, using ε-moves, in M the initial state of the copy of MA can be reached from
the state p while the state q can be reached from each final state in the copy. If M1 has s1

states (hence O(s2
1) transitions) and each MA has at most s2 states, then the resulting nfa M

has O(s2
1s2) states. This number can be reduced to O(s1s2) by using, for each state p, only

one copy of MA for all outgoing transitions from p on the symbol A, and connecting with ε-
transitions the final states of the copy to all the states q which in M1 are reachable from p by
transitions on A.

3. Converting NSE Grammars into Automata

In [3] the authors gave an interesting alternative proof of the above mentioned Chomsky’s result
on the regularity of languages generated by nse grammars. In particular, they obtained the
result as a consequence of the following theorem:

Theorem 3.1 ([3, Thm. 2]) Let G = (V,Σ, P, S) be an nse grammar. Then there exist n
grammars G1, G2, . . . , Gn, n > 0, such that G = G1 ⊕ G2 ⊕ · · · ⊕ Gn and, for i = 1, . . . , n, Gi

is either left-linear or right-linear.

The proof of Theorem 3.1 is constructive: it presents a method for obtaining the gram-
mars G1, G2, . . . , Gn from the given nse grammar G. Since this method is important to obtain
the state upper bounds for nfas and dfas equivalent to nse grammars presented in this section
and other results in the paper, we now summarize how grammars G1, G2, . . . , Gn are obtained
in [3] (for a detailed presentation of a related decomposition see [9, Sect. 3.5]).

• Let n be the number of sccs in the production graph P(G).

• If P(G) is strongly connected then G is either a left-linear or a right-linear grammar,
hence G = G1 is regular.

• Otherwise, the sccs of P(G) are considered in some topological order and, for i = 1, . . . , n,
the grammar Gi = (Vi,Σi, Pi, Si) is defined as follows:

– Vi is the set of variables in the ith scc,

– Σi = Σ ∪
⋃
j>i Vj, for technical reasons we also set Σ0 = {S}.

– Pi is obtained by restricting P to productions whose left-hand side variables are in Vi,

– Si is an element in Vi ∩ Σi−1.

Since P(Gi) is strongly connected, Gi is either a left-linear or a right-linear grammar,
for i = 1, . . . , n.
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We are now going to estimate the size of nfas and dfas equivalent to the nse grammar G
given in Theorem 3.1. Let us suppose that the size of G is s. Then n ≤ s. Furthermore,
s = s1 + s2 + · · ·+ sn, where si is the size of Gi, i = 1, . . . , n.

Now, from each grammar Gi, we obtain a family of nfas {Mi,A | A ∈ Σi−1 ∩ Vi}, such that
each nfa Mi,A has size O(si) and generates the language L(Gi|A).

To obtain an nfa M accepting L(G), we iteratively construct automata Mi, for i = 1, . . . , n,
accepting L(G1 ⊕ G2 ⊕ · · · ⊕ Gi) as follows. Let us start by taking M1 = M1,S. For i > 1,
the automaton Mi is obtained by substituting in the automaton Mi−1 each transition labeled
by A ∈ Σi−1 ∩ Vi with the nfa Mi,A, as explained in Section 2.

At the end of this process, we finally obtain M = Mn, which accepts L(G) and has O(s1s2 · · · sn)
many states. Since s1 + · · · + sn = s, we get that s1 · · · sn = 2log(s1···sn) = 2log s1+···+log sn ≤ 2s.
Hence, we conclude that M has 2O(s) many states. Considering also the cost of the conversion
of nfas into equivalent dfas, we obtain the following:

Theorem 3.2 Let G be an nse grammar of size s. Then there exist an nfa and a dfa
accepting L(G) with 2O(s) and 22O(s)

many states, respectively.

4. Optimality

In this section we prove that the exponential and double exponential state upper bounds for
the conversion of nse grammars into nfas and dfas given in Theorem 3.2 cannot be reduced.
To this aim, we now introduce a family of witness languages.

Given an integer h > 0, consider the language Lh ⊆ {a, b}∗ defined as the set of strings
composed of k blocks w1w2 · · ·wk each of length h, for some k > 1, such that the last block wk
is the reverse of one of the first k − 1 blocks. Formally,

Lh = {w1w2 · · ·wk−1wk | k > 1, wi ∈ {a, b}h, i = 1, . . . , k, and ∃j, 1 ≤ j < k, s.t. wj = wRk }.

Let us define the grammarGh = (V,Σ, P, S) generating Lh, with V = {S,C1, . . . , Ch, A1, . . . , Ah},
Σ = {a, b}, and the productions are:

• S → C1A1 | A1

• Ci → aCi+1 | bCi+1 for 1 ≤ i < h

• Ch → a | b | aC1 | bC1

• Ai → aAi+1a | bAi+1b for 1 ≤ i < h

• Ah → aa | bb | aC1a | bC1b

It can be observed that from the variable C1 it is possible to derive one or more blocks of h
terminal symbols, i.e., for x ∈ Σ∗, C1

?
=⇒ x if and only if x ∈ (Σh)+. From the variable A1, after

expanding variables Ai, i = 1, . . . , h, we generate sentential forms as A1
?

=⇒ wwR or A1
?

=⇒
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wC1w
R where w ∈ Σh. Then A1 generates all terminal strings of the form w(Σh)∗wR, where w ∈

Σh. Using the initial symbol S, it is possible to combine the two variables C1 and A1 to obtain
an arbitrarily long sequence of blocks of length h followed by the blocks wj and wk that enclose
another arbitrarily long sequence of blocks of h symbols.

Observe that the size of the grammarGh is linear in the parameter h, namely Symb(Gh) = O(h).
Using a distinguishability argument, we are going to show that any dfa accepting Lh requires
a number of states which is double exponential in h.

Let w1, w2, . . . , w2h be the list of all the strings in Σh in lexicographical order, and S = 2Σh be
the family of all the subsets of Σh. For each s ∈ S, we consider the string vs = wi1wi2 · · ·wik ,
where 1 ≤ i1 < i2 < . . . < ik ≤ 2h, k ≥ 0, and s = {wi1 , wi2 , . . . , wik}. Given two different
subsets s′, s′′ ∈ S, let x ∈ Σh be a string such that x ∈ (s′ ∪ s′′) \ (s′ ∩ s′′). Then, the string xR

distinguishes vs′ and vs′′ , i.e., exactly one between vs′x and vs′′x belongs to Lh. Hence, each
dfa accepting Lh needs at least #S many states. This gives a 22h lower bound for the size of
any dfa accepting Lh and a 2h lower bound for the size of any nfa accepting Lh. This allows
us to conclude that the gaps given in Theorem 3.2 cannot be reduced.

Let us observe that the above result is strictly dependent on the structure of considered strings.
In Section 6 we show that if a given grammar generates a letter-bounded language, then the
double exponential gap cannot be reached.

For the sake of completeness we describe how an nfa Nh accepting Lh works.

• Nh starts to scan the input string by skipping the first j − 1 blocks and by nondetermin-
istically guessing which is the block wj. To this aim, Nh uses a counter modulo h, that
requires h states.

• After that, the automaton has to read and finally save the content of wj into its finite state
control. The transition graph of this part corresponds to a complete binary tree of height h
starting from the initial state and in which each of the 2h leaves represents a string w ∈ Σh.
As a consequence, the number of states required for this part is

∑h
i=1 2i = 2h+1 − 2.

• After reaching a leaf, it is necessary to skip k − j + 1 blocks — again, this can be done
in a nondeterministic way — and, finally, Nh has to verify that the last block corresponds
to the stored word. This can be done by comparing the next input symbol with the last
symbol in the string w stored in the control; if they are different, then the computation
stops, otherwise the last symbol of w is removed and the computation continues in the
same way (these operations require O(h) states for each leaf).

From the above description, summing up the states of the automaton, it is possible to derive an
upper bound on the size of the nfa Nh that is exponential in the size of the nse grammar Gn.
More precisely, we can show that Nh can be implemented by using h +

∑h
i=1 2i + 2h(h − 1) +∑h−1

i=0 2i = (2 + h)2h + h− 3 many states.
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5. Converting qNSE-grammars into Automata

It is well-known that unary context-free languages, i.e., languages generated by cfgs with
a one-letter terminal alphabet, are regular [8]. Hence, this holds even for unary grammars
containing self-embedded variables.

In this section we consider qnse grammars, namely cfgs in which the only self-embedded
variables are unary. As observed in [2], all the languages generated by these grammars are
regular. We are now going to describe and refine the idea used to prove that result, in order to
extend Theorem 3.2 to qnse grammars. First, it is useful to have an upper bound for the cost
of the conversion of unary cfgs into equivalent finite automata.

Lemma 5.1 Each unary cfg G of size s can be transformed into an equivalent nfa with 2O(s)

states and into an equivalent dfa with 2O(s2) states.

Proof. In [15, Thms. 5, 6], it was proved that for any unary cfg in Chomsky normal form
with h variables there exists an equivalent nfa with at most 22h−1 + 1 states and, when h ≥ 2,
an equivalent dfa with less than 2h

2
states. By inspecting the arguments used in the proof, it

can be observed that these bounds do not change if unary cfgs whose production right-hand
sides have length at most 2 are considered. Each cfg can be turned in this form with a linear
increase of the size. 2

Let G = (V,Σ, P, S) be a qnse grammar of size s. We proceed as follows:

• We can suppose that each production right-hand side is either a sequence of variables or
a single terminal, i.e., α ∈ V ∗ ∪ Σ for each A→ α in P . This (at most) linearly increases
the size of the grammar.

• Let G′ = (V ′,Σ′, P ′, S) and G′′ = (V ′′,Σ, P ′′, S ′′) be the grammars obtained from G by
choosing as V ′ the set of variables in G which generate at least one nonunary terminal
string and as V ′′ = V \ V ′ the set of unary variables, namely variables generating unary
languages, Σ′ = Σ ∪ V ′′, P ′ is the set of productions in P having left-hand side in V ′,
P ′′ = P \P ′, and S ′′ is a variable in V ′′. It can be verified that G = G′⊕G′′. Furthermore,
if the sizes of G′ and G′′ are s′ and s′′, then s′ + s′′ = s. Notice that Σ′ = V ′′ under the
hypothesis that useless variables have been removed from G.

• Since its variables are nonunary, the grammar G′ is nse. Hence, using Theorem 3.2, there
exists an nfa M ′ with 2O(s′) states accepting L(G′).

• For each unary variable A ∈ V ′′, from the grammar G′′|A we obtain a unary nfa MA

accepting L(G′′|A) with 2O(s′′) states (Lemma 5.1).

• Finally, we substitute in the automaton M ′ the automata MA, as described in Section 2.
Hence, we obtain an nfaM with 2O(s′)2O(s′′) states accepting the language L(G) = L(G′⊕
G′′). Since s′ + s′′ = s, the total number of states of M is 2O(s).

From the previous discussion, we obtain the extension of Theorem 3.2 to qnse grammars:

Theorem 5.2 Let G be a qnse grammar of size s. Then there exist an nfa and a dfa
accepting L(G) with 2O(s) and 22O(s)

many states, respectively.
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The optimality of the bounds in Theorem 5.2 follows from the optimality of those in Theorem 3.2
presented in Section 4.

6. The Letter-Bounded Case

In this section we consider nse and qnse grammars generating letter-bounded languages,
namely subsets of a∗1a

∗
2 · · · a∗m, for a given alphabet Σ = {a1, a2, . . . , am}. We prove that the dou-

ble exponential gap in Theorem 5.2 from qnse grammars to dfas cannot be reached. Indeed,
we reduce it to a simple exponential of the square of the size of the grammar.

Given a qnse grammar G = (V,Σ, P, S) of size s such that L(G) ⊆ a∗1a
∗
2 · · · a∗m is a letter

bounded language, we apply the same procedure described in Section 5, in order to obtain an
nfa M with 2O(s) states accepting L(G).

At this point we have to turn M into an equivalent dfa. To this aim, we could use the result
presented in [10] for the conversion of nfas accepting letter-bounded languages into equivalent
dfas, which gives a subexponential, but still superpolynomial upper bound that, in the worst
case, cannot be reduced. However, this would produce a double exponential upper bound, for
the conversion from a qnse grammar. We will be able to do better after refining the arguments
used in the previous sections and by applying some results related to state complexity of unary
automata.

We present some observations which will allow to achieve our goal.

• For each left-linear (or right-linear) grammar whose production graph is strongly con-
nected, it is possible to find an equivalent nfa (with a linear number of states in the size
of the grammar) such that its transition graph consists of one scc containing the initial
state and of a finite number of paths from the scc to the unique final state. Each state
on these paths (except the beginning one, and including the final state) is a trivial scc.

• Substituting one transition in a nontrival scc C by an nfa (without useless states) produces
a unique scc, namely an “expanded version” of C.
• Substituting one transition connecting two sccs by an nfa produces a nontrivial scc if

and only if the nfa used in the substitution contains an scc.

Using these observations, we now inspect the structure of the nfaM in order to see in which way
nontrivial sccs in its transition graph have been introduced (it is useful to remember how M
has been obtained according the procedures described in Sections 3 and 5). The transition
graph of M could contain only the following sccs:

• An “initial” nontrivial scc which has been obtained by substitutions starting from the
scc of G containing the initial symbol.

• For each symbol A ∈ V , one or more sccs which have been obtained starting from a point
when a transition labeled by A has been substituted. Note that all the sccs obtained for
the same symbol A are identical.
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We now study the cost of making deterministic each nfa that can be obtained from M by fixing
a letter aj ∈ Σ and considering the part of M working on this letter. In particular, we consider
the part of the automaton M consisting of all states with in-going or out-going transitions
on aj, besides all states that are connected by ε-transitions to this part of M . The transitions
we consider are all aj-transitions and ε-transitions between the states we selected. Furthermore,
we pick up a state as initial state and a set of final states. From the automaton so obtained, we
construct an equivalent nfa M̃ with the same set of states but without ε-transitions (hence,
we remove ε-transitions without making the automaton deterministic). We can observe that

all the scc in M̃ still represent some of above listed sccs of M . We want to obtain an upper
bound for the number of states of a dfa equivalent to M̃ .

To this aim the following result on unary nfas will be used:

Lemma 6.1 Let M̃ be a unary N-state nfa, and C1, C2, . . . , Ck be the nontrivial sccs in its
transition graph. For i = 1, . . . , k, let us choose an integer `i, with 0 < `i ≤ N , such that there
is a state pi in Ci, with a loop of length `i from pi to pi. Then there exists a dfa equivalent
to M̃ with an initial path of O(N2) states and a loop of ` states, where ` is the least common
multiple of `1, `2, . . . , `k.

Proof. Suppose M̃ has set of states Q, input alphabet {a}, transition function δ, initial

state qI , and set of final states F . As in [7], for q1, q2 ∈ Q, m ≥ 0, we write q1
am−−→ q2, to denote

a path from state q1 to state q2 on input am. To prove the lemma we make use of the following
result which has been obtained in [7] to present a transformation of unary nfas into Chrobak
normal form [6]:

Lemma 6.2 ([7, Lemma 3.1]) If there exists a computation path q1
aα−−→ q

aβ−−→ q2

for some states q1, q, q2 in M̃ , and if there also exists a loop q
aλ−−→ q, such that β ≥

N ·λ, then the path q1
aα−−→ q

aβ−−→ q2 can be replaced by an equivalent path q1
aα−−→ q

aλ−−→
q

aβ−λ−−−→ q2.

From Lemma 6.2 we now derive the following:

Claim If there is a path q1
am−−→ q2 with m ≥ 3N2 + N such that the first state in

a nontrivial scc reached in it belongs to the scc Ci, 1 ≤ i ≤ k, then there is an

equivalent path q1
aα−−→ pi

a`i−−→ pi
aβ−`i−−−→ q2, with α + β = m.

Proof. Let us start by decomposing the given path as q1
aα−−→ q

aβ−−→ q2, where α+β =
m and q is the first state which is reached along the path and belongs to a nontrivial
scc. Hence, 0 ≤ α < N and β > 3N2. Let Ci be the scc which contains the state q,
and 0 < λ ≤ N be the length of a simple loop from q to q. By Lemma 6.2, there

exists an equivalent path q1
aα−−→ q

aλ−−→ q
aβ−λ−−−→ q2. In the case q = pi and λ = `i, the

proof of the claim is completed. Otherwise, as observed in [13], we can repeatedly
apply Lemma 6.2, to obtain equivalent paths of the form

q1
aα−−→ q

aλ−−→ q
aλ−−→ · · · aλ−−→︸ ︷︷ ︸
t times

q
aβ−tλ−−−→ q2 (1)
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for each t such that β − (t− 1)λ ≥ Nλ.

Now consider two simple paths q
aλ
′

−−→ pi and pi
aλ
′′

−−→ q in Ci. Then 0 < λ′, λ′′ < N and
in Ci there exists a (not necessarily simple) loop of length λ′ + λ′′ < 2N − 1 from q
to q which visits pi. By choosing t = λ′ + λ′′ in (1), we obtain λ′ + λ′′ repetitions of
the loop of length λ from q to q. We can replace them by λ repetitions of the loop of
length λ′ + λ′′ from q to q that visits pi, and decompose the path so obtained as

q1
aα−−→ q

aλ
′

−−→ pi
aλ
′′

−−→ q
a(λ−1)(λ′+λ′′)
−−−−−−−−→ q

aβ−λ(λ
′+λ′′)

−−−−−−−→ q2 (2)

So, replacing α by α+λ′ and β by β−λ′, we have α+β = m, q1
aα−−→ pi

aβ−−→ q2. Since β

is large enough, according to Lemma 6.2, there exists an equivalent path q1
aα−−→ pi

a`i−−→
pi

aβ−`i−−−→ q2. This completes the proof of the claim. 2

For q1, q2 ∈ Q, 1 ≤ i ≤ k, we now consider the language L
(i)
q1,q2 consisting of all strings am

having a path q1
am−−→ q2 such that the first state in a nontrivial scc reached in it belongs to Ci.

As a consequence of the previous claim, we get that am ∈ L(i)
q1,q2 if and only if am+`i ∈ L(i)

q1,q2 for

each m ≥ 3N2 +N . Hence, the language L
(i)
q1,q2 is a accepted by a dfa with an initial path and

a loop consisting of 3N2 +N and `i many states, respectively.

To complete the proof we observe that the language L accepted by M̃ can be expressed as

L = L0 ∪
k⋃
i=1

⋃
qf∈F

L(i)
qI ,qf

where L0 is the language consisting of strings of length less than 3N2 +N belonging to L, which
is accepted by a dfa with no more than 3N2 +N states. From the results concerning the state
complexity of the union of languages accepted by unary dfas [14, Thm. 4], we conclude that

there exists a dfa equivalent to L̃ with an initial path of 3N2 +N states and a loop of ` many
states, where ` is the least common multiple of `1, `2, . . . , `k. 2

To obtain an upper bound for the number of states of a dfa equivalent to the automaton M̃ we
are considering, we first observe that M̃ has N = 2O(s) many states. In each nontrivial scc Ci
of its transition graph, we choose a loop length `i, with 0 < `i ≤ N . Since all sccs which have
been obtained starting from a same variable A are identical, we can choose for them a same
length `A. So, we obtain O(s) many different lengths. Furthermore, we have to choose a further
loop length for the scc originated from S, if it is not trivial. According to Lemma 6.1, we can
obtain a dfa equivalent to M̃ with an initial path of 2O(s) states, and a loop of ` states, where `
is the least common multiple of the loop lengths we have selected. Since we have chosen O(s)
many different lengths and each one of them is bounded by N = 2O(s), we obtain that ` is
bounded by 2O(s2). Hence there exists a dfa equivalent to M̃ , with at most 2O(s2) states.

To complete the construction, we now transform the nfa M accepting L(G) into an equiva-
lent dfa, by combining the previous arguments with the “incremental” technique developed
in [10]. Let us start by modifying M to make deterministic the section which works on sym-
bol a1. Then we modify the section which works on a2 by determinizing each automaton which
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corresponds to entering this section from a different final state of the previous section, and so
on. For the state estimation, we can proceed as in [10], with the difference that, according
to the previous discussion, each deterministic automaton we introduce has 2O(s2) states. This
finally leads to get a total number of states for the final dfa which is still of the order of 2O(s2).
By summarizing, we got the following result:

Theorem 6.3 Let G be a qnse grammar of size s generating a letter-bounded language over a
fixed alphabet. Then there exist an nfa and a dfa accepting L(G) with 2O(s) and 2O(s2) many
states, respectively.

We point out that in [15] it was proved that for infinitely many integer h > 0 there exists a
unary language generated by a cfg in Chomsky normal form with h variables such that each
equivalent dfa needs at least 2ch

2
states, where c > 0 is a constant. This gives a lower bound

that matches with the upper bound we have stated in Theorem 6.3.
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